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1 Introduction

Given a planar n-sided simple polygon P c R? with n > 3 vertices v,...,v, € R?, the n functions b =
[by,..., b,]: P — R™" are called generalized barycentric coordinates if they satisty the partition of unity property

n
Zb,(u):l VveP )
i=1
and the linear reproduction property
n
Zbi(v)vl-zv YveP 2

i=1

In addition, it is often desirable for the functions b; to be non-negative,

b;(v)=0, i=1,...,n YvePr, 3)
and to have the Lagrange property
0, ifi#j, ..
bi(yj)zai'j:{]_y lfl:], l,]=1,...,n, (4)

where 6; jlis the Kronecker delta. We also say that the coordinate functions are smooth, if
b;eC*, k>o, (5)

and local, if the functions b; have small support

supp(b;)={v € P: b;(v) #0}. (6)

For n =3, when P is a triangle, it is known [21] that the barycentric coordinates of v are uniquely de-
termined by (1) and (2). These classical barycentric coordinates are linear functions that satisfy all properties
above. However, for polygons with n > 3 vertices, the choice of b; is no longer unique.

In recent years, many different constructions of barycentric coordinates for polygons with n > 3 vertices
have been proposed. Some of these coordinates are successfully used for colour interpolation [20], image
warping [12], shape deformation [15], and many other applications. Nevertheless, the question of finding a
simple closed-form construction of the functions b;, which satisfy all properties above is still open.



1.1 Related work

Wachspress [26] was one of the first who proposed a construction of barycentric coordinate functions
for polygons with n > 3 vertices. These Wachspress coordinates are rational functions and have a simple
closed form [20], but they are well-defined only for convex polygons. The same holds for discrete harmonic
coordinates [22, 7], which arise from the standard piecewise linear finite element approximation of the
Laplace equation.

The construction of discrete harmonic coordinates suggests that different properties of harmonic func-
tions can be exploited to derive generalized barycentric coordinates, and Floater [8] uses the circumferential
mean value property of harmonic functions to derive mean value coordinates, which have a simple closed
form and are well-defined for any concave polygon [12]. They are positive inside the kernel of star-shaped
polygons, satisfy the Lagrange property, and are smooth everywhere in the plane, except at the vertices v;,
where they are only C° continuous. Other barycentric coordinate functions with a closed-form definition,
which are well-defined for concave polygons and possibly negative inside these polygons, are metric[18, 25],
Poisson [16], and Gordon-Wixom coordinates [10, 2]. To the best of our knowledge, the only coordinate
functions with a closed form that guarantee positivity inside arbitrary concave polygons are positive mean
value [17] and positive Gordon-Wixom coordinates [19], but they are not smooth. Another recent generaliza-
tion of barycentric coordinates with a closed form is based on power diagrams [3], but the computation of
these coordinates is quite involved.

Neither of the above closed-form constructions results in positive and smooth coordinates for arbitrary
concave polygons, but it is possible to obtain generalized barycentric coordinates with both properties
numerically by solving certain optimization problems. Examples of such computational coordinates include
harmonic [9, 15], maximum entropy [13], and local barycentric coordinates [28)]. These coordinates possess
all important properties above, but the usual approximation of harmonic and local barycentric coordinates
involves a triangulation of the domain, and the obtained coordinates are only piecewise linear functions.
Subdivision can be used to make these coordinates C! continuous [1], but this approach is computationally
involved. Instead, maximum entropy coordinates are smooth and can be evaluated efficiently with Newton’s
method, but they are globally supported.

All these constructions have in common that they depend on the number of the polygon’s vertices, and
the time complexity for a single evaluation of the coordinate functions at some v € P is at least O(n).

1.2 Contributions

We propose a novel construction of generalized barycentric coordinates for arbitrary simple polygons, which
are non-negative, smooth, and locally supported. These coordinates have a closed-form definition and can
be evaluated in constant time, due to the local support. Note that the constrained Delaunay triangulation of
the polygon needs to be computed in a preprocessing step, and depending on the application, an additional
cost on the order of O(logn) for each evaluation may apply, but even in this case, the computation time
compares favourably to that of other coordinates.

The proposed construction is based on the idea of blending mean value coordinates over the triangles
of the constrained Delaunay triangulation of the input polygon with appropriate blending functions. We
describe this idea and the blending functions in detail in Section 2 and provide pseudocode for the efficient
implementation of our coordinates in A. We further compare them with other coordinates in Section 3 and
discuss the proposed approach and its limitations in Section 4.

2 Blended barycentric coordinates

It is known [14] that mean value coordinates are always positive inside any quadrilateral. We first show how
this property can be exploited to obtain non-negative barycentric coordinates for pentagons (Section 2.1),
before extending this construction to hexagons (Section 2.2) and to arbitrary polygons (Section 2.3).

2.1 Coordinates for pentagons

Let P =[v,,..., 5] C R? be a pentagon in the plane. Without loss of generality, we assume that it can be split
into three triangles A, =[vs, 13, 1], A, =[1;, 15, 14], and Az =[1y, vy, Us] (see Figure 1, left). Alternatively, this



Figure 1: Pentagons can be split into three triangles (left), and hexagons can be split into four triangles (centre and
right).

triangulation can be seen as two overlapping quadrilaterals

O =A UL, =[1y, 1y, 15, 1],
O, = A UAg =[wy, 1y, Uy, Us]

with the common triangle A,. We denote by

b, =[b},b),b},b1:0, - R*

12720 Y30
the mean value coordinates with respect to the quadrilateral O0; and by
b, = [blz, bzz, b42, b52]: 0, - R*
those with respect to the quadrilateral O0,. We also consider two blending functions

1, 2 Dy \ {vg} —[0,1]

such that

(U)_ ]-y UE[UZ!U4)) (U)_ 0) VE[UZrV4)r
= 0, ve(unl’ HalI= 1, ve(y,unl’

and u,(v)+ uy(v) =1 for any v € A, \ {1, }. Since u; and u, are not defined at v, and actually diverge as
v — 1y, we exclude this vertex from the definition, but, as we will show later, this does not affect the final
construction of our barycentric coordinates.

To construct y; and u,, we follow a simple procedure. Given the triangle A,, we first determine the
classical barycentric coordinates 4 ,: A, — [0, 1] corresponding to v, and v; as

_ Arealv,, v, v,] A(v)= Arealv, vy, 1] VoeA
— QW)= 2:

M(v)= ,
1) Area[vy, vy, vy] Area[vy, Uy, vy]

In order to guarantee smooth coordinates (see details below), we then choose a smooth monotonic function

q:[0,1] — [0, 1] and define the blending functions as

! 03
= .U2=
U'1+0'2’ O'1+0'2’

31 o1=qol, Oy=(qoA,. (7)

Using the quadrilateral mean value coordinates b; and b, and the blending functions y; and u,, we
finally define the blended coordinate functions b;: P\ {v;} = R, i=1,...,5 (see Figure 2) as

b (v), vEA,,
bi(v)= 1 b} (V) (V) + b} (V)ua(v), veLo\{n}, i=1,2,4,
biz(v), vEN;
(8
b; (v), veEN,, 0, veN,,
bs(v) = bg,l(V)Hl(V)r vel \{u} bs(v) = bg,z(V).Uz(U)» vel\{u}
0, veEN,S, b2(v), veEN,.
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Figure 2: Construction of blended coordinates for the pentagon in Figure 1 (left). The coordinate function b; (left) is
defined by multiplying the mean value coordinate function b} for O, with the blending function y, over A, (outlined in
grey). To construct b, (right), we likewise multiply the mean value coordinates b, and b? with u, and u,, respectively,
and add the results. The colour range shows function values between 0 (blue) and 1 (red), and the white curves are the
contour lines at 0.1, 0.2, ..., 0.9.

These functions satisfy the partition of unity property (1), because

ven, = ibi(v)z > blw=1,

i=1 i=1,2,3,4
5
veM\{u} = D biv)= b} () (v)+ b (0)ua(v) = (v) + pa(v) =1,
i=1 i=1,2,3,4 i=1,2,4,5
5
ver; = D bv)= b2 (v)=1
i=1 i=1,2,4,5

and the linear reproduction property (2), because

5
ved, = > b= > b=y,
i=1

i=1,2,3,4
5
vel\{u} = > bi(v)y= b (v)viun(v) + bA(0)vipta(v) = v (V) + vpa(v) = v,
i=1 i=1,2,3,4 i=1,2,4,5
5
veh; = D b= b2 (v)v; = v.
i=1 i=1,2,4,5

It further follows directly from the definition that the functions b; satisfy the non-negativity property (3)
and have the Lagrange property (4) at all v; for j # 4. To prove the Lagrange property at v,, we first observe
that

min{b; (v), b?(v)} < b} (V)1 (v)+ b} (V)u2(v) < max{b; (v), b}(v)}  Vve,\{v}
fori=1,2,4, because u,(v)+ u»(v)=1, and

0<bj(V)m(V)< b} (v), 0SB (Wa(v)<bi(v)  Yveh,\{v}

since 1 (v), uo(v) €[0,1]. As all lower and upper bounds converge to §; 4, as v approaches v,, we conclude
that

lim bi(U) = 51"4

vy
foralli=1,...,5.

If g has k > 0 vanishing derivatives at 0 and at 1, then the construction above guarantees that y; and u,
blend with C* continuity into the constant functions with values 0 or 1 along the edges [v,, ;) and (v, ;],
which in turn implies the C* continuity of the coordinate functions b;. The simplest choices of g for k =1
and k =2 (see Figure 3) are the polynomials

qi(x)=3x*=2x* and  g(x)=6x"—15x*+10x> Vxe[0,1].
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Figure 3: Examples of polynomial functions ¢, and ¢, used for the construction of C! and C? blended coordinates,
respectively.

Figure 4: The construction of the blended coordinate function b; for the hexagon in Figure 1 (right) involves three

blending functions over A, (outlined in grey) for combining the quadrilateral mean value coordinates b;, bZ, and b}.

The function g, was used for the examples in Figures 2 and 4, and a comparison between C! and C?
continuous coordinates, constructed with ¢; and g,, respectively, can be found in Figures 6, 7, and 8.

2.2 Coordinates for hexagons

To construct blended coordinates for a planar hexagon, a similar approach can be used after splitting the
hexagon into four triangles. If all triangles of the split have only one or two neighbouring triangles (see
Figure 1, centre), then the blended coordinates are constructed as described in Section 2.1. However, it
can also happen that one of the triangles has three neighbours (see Figure 1, right). Given such a hexagon
P =[v,,..., 5] C R? in the plane, let

O =A1UA, =[1vy, 15, 13, 5],
O =2, UA, =[1y, 13, Us, Ug),
O3 =A3UA, =[wy, 13, Uy, U5]

be the quadrilaterals that overlap over the triangle A, =[v;, 15, U5]. As in Section 2.1, we first determine three
sets of mean value coordinates b;, b,, and b; for these quadrilaterals, respectively, and then consider the
blending functions

nu‘1’1u2"u3: A4\{ylr U?n US} I [Ov 1]:
such that

,ul(v)z{l’ v E (v, 13), .Uz(U)={L v €(vs, 1), ,ug(v)z{l' v e(v3, U5),

0, vel(vs,us)U(vs, 1), 0, ve(n,rn)u(vs,uvs), 0, ve(vs,n)U(n,vs),

and u,(v)+ uy(v) + us(v)=1for any v € A, \ {v, v3, vs}. Again, u;, u,, and us are not defined at the vertices
of A4, but this does not affect the final construction of generalized barycentric coordinates. Now, given the
triangle A, if we define the classical barycentric coordinates A, ,3: A, — [0, 1] corresponding to vs, v, and
V) as

Arealvy, v3, V] Arealv;, v, Us] Arealv, v3, Us]
—— A= As(v)=
Arealv,, v3, Us]

Al(l/): VU€A4,

Area[vy, v3, vs]’ Areal v, vs, Us]



Figure 5: Example of a general polygon and its constrained Delaunay triangulation.

then we can construct the blending functions as

0 O O3

U 9

:Ul+o'2+03’ ‘u220'1+0'2+03’ ‘u320'1+02+03
with
01=(qoA3)(goA3), 0,=(qoA3)(goA), o3=(qoA1)(goAy),

and g as defined in Section 2.1. The construction of the blended coordinate functions b;: P\ {v;, v5, 15} = R,
i=1,...,6 (see Figure 4) is then analogous to the construction (8), and with the same arguments as above it
can be shown that these functions satisfy the key properties (1) and (2), are non-negative, have the Lagrange
property, even at the vertices v;, v3, and v5, and are smooth.

2.3 Coordinates for arbitrary polygons

We are now ready to present the construction of blended barycentric coordinates for arbitrary simple
polygons. Given the constrained Delaunay triangulation A = {A,,...,A,,} of a planar polygon P =[vy,..., v,]
with n > 6 vertices, we consider all quadrilaterals defined by two triangles that share an interior edge,
determine the mean value coordinates with respect to these quadrilaterals, and blend them as explained
above. For example, for the polygon in Figure 5, the quadrilateral mean value coordinates are blended over
the triangles A\1,...,Ag as in Section 2.1 and over the triangles A; and Ag as in Section 2.2. In this way, we
obtain coordinate functions with the same properties as before.

Since it is lengthy to write down the analytic expressions of the blended coordinate functions b; as
in (8), we do not present these formulas, but rather discuss how to evaluate them efficiently at any point v
inside the polygon. Suppose we know the triangle A ; € A that contains v. We then compute the blended
coordinates following a simple procedure with two steps. In the first step we find the k triangles in A that
share an edge with A j-In the second step, depending on the number k € {1,2,3}, we evaluate the k + 3
functions b; that correspond to the k +3 vertices of the k quadrilaterals that overlap at A, using one of the
three routines given in A. All other coordinates can be safely set to zero. On the one hand, this implies that
the time complexity for the evaluation of all coordinates at any v is O(1). On the other hand, it shows the
locality of blended coordinates, because the support supp(b;) of the coordinate function b; is just the union
of the triangles adjacent to v; and their neighbouring triangles. For example, the support of b; in Figure 5 is
supp(b)=A, UAsUA,.

In addition to the constant cost of this evaluation procedure, the constrained Delaunay triangulation A
of P needs to be computed in a preprocessing step in O(n logn) time, and, depending on the application,
some time may be spent on finding the triangle A; that contains v. We shall briefly discuss three possible
scenarios. To generate the images in Figures 6, 7, and 8, we used seven linear subdivision steps to refine
A, evaluated the coordinates at the vertices of this refined triangulation, and rendered the result. In this
scenario, careful book-keeping during the subdivision process provides A for free, and the same holds in
any application that allows to choose the evaluation points v per triangle of A. Another scenario is image
warping, where the coordinates need to be evaluated for each pixel of the warped image. In this situation, A;
has to be found only once for the first pixel, and subsequently a local search with constant time complexity
can be used to find A; for the next pixel. Such a local search can also be used to evaluate the coordinates at
the vertices of a (dense) triangulation of the polygon, if the vertices are visited, for example, by breadth-first
traversal. In the worst case, if the application requires to compute coordinates at truly random points v,
then A can be found in optimal O(log n) time [6] by using a hierarchy of Delaunay triangulations, and we
report some timings for this situation below.
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Figure 6: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1,0.2,...,0.9 (and at —0.2 and —0.1 for mean value coordinates), the contour line at 10
is shown in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon for
blended coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for mean
value coordinates.

3 Comparison

Figures 6, 7, and 8 show a comparison of C! and C? continuous blended (BL) coordinates with mean value
(MV), maximum entropy (ME), harmonic (HM), and local (LC) barycentric coordinates for three different
polygons (with 7, 13, and 39 vertices, respectively) and coordinate functions associated to convex and concave
vertices. While mean value coordinates can be negative inside the polygon, blended coordinates are always
positive by definition. Maximum entropy and harmonic coordinates are also positive inside the polygon,
but they are globally supported and can be computed only numerically. Instead, blended coordinates are
local and have a closed form. Local barycentric coordinates also fulfill the locality requirement, but they can
again be computed only numerically, and the exact support of these coordinate functions is not known. The
numerical solver used to compute them generates small function values even outside the probable support,

C'BL C?BL

Figure 7: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1,0.2,...,0.9 (and at —0.3,—0.2,—0.1 for mean value coordinates), the contour line at
107 is shown in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon
for blended coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for
mean value coordinates.
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Figure 8: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1,0.2,...,0.9 (and at —0.1 for mean value coordinates), the contour line at 10~ is shown
in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon for blended
coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for mean value
coordinates.

and Zhang et al. [28] suggest to treat all values below 10™* as numerically zero. In turn, the exact support of
blended coordinate functions is clearly defined.

We implemented all coordinates above in C++ on a MacBook Pro with 2.4 GHz Intel Core i7 processor
and 8 GB RAM. For blended coordinates, we first build the constrained Delaunay triangulation of the polygon
with Triangle [24] and then evaluate the coordinate functions as explained above, using the pseudocode in A.
For mean value and maximum entropy coordinates, we implemented the pseudocodes given in [12, Section
5] and [13, Section 5], respectively. For harmonic coordinates, we use the sparse Cholesky decomposition in
Eigen[11] to solve the linear system arising from the standard finite element discretization of the Laplace
equation with Dirichlet boundary conditions, and local barycentric coordinates are computed with the code
provided by Deng and Liu [5].

To compare the performance, we created two sets of test polygons. The first set is shown in Figure 9 and
consists of 5 concave polygons with n =6/ + 2 vertices that are composed by concatenating [ =2” copies
of the piece shown on the left, for p =0,...,4. The constrained Delaunay triangulations of these polygons
have exactly 2 triangles with one neighbour, 6/ —2 triangles with two neighbours, and no triangle with
three neighbours. The second set in Figure 10 consists of 5 isotoxal star polygons with the same numbers of
vertices. In this case, the constrained Delaunay triangulations have 3/ + 1 triangles with one neighbour, no
triangles with two neighbours, and 3/ —1 triangles with three neighbours.

For all test polygons, we evaluated the different coordinates at the 50,000 interior vertices of a dense
Delaunay triangulation, and the results are summarized in Figures 11 and 12. In case of blended coordinates,
the given times correspond to the construction of the constrained Delaunay triangulation, which is less than
0.0004 sec, even for n =98, plus the evaluation of the n coordinate functions at all evaluation points, where
the difference between using ¢, or g, was not noticeable. For mean value and maximum entropy coordinates,
we report the pure evaluation times, and for harmonic coordinates we added the times for assembling the
matrix, factorizing it, and solving the linear system for all n coordinates with back substitution. In case
of local barycentric coordinates, the solver did not converge for such a dense triangulation, and so we
decided to use instead a Delaunay triangulation with only 500 interior vertices. The given times include
the initialization of the solver and running it for a fixed number of 500 iterations, which is barely enough to
guarantee convergence for n = 8. Even for this comparatively small number of interior vertices, the timings
are about one order of magnitude slower, and they would be even worse if the solver would be allowed to
run until convergence. To give an idea about the worst-case scenario for blended coordinates regarding the
additional cost for finding the triangles that contain the query points, we also report the time needed for this
triangle search (TS) with the hierarchical Delaunay triangulation strategy implemented in CGAL [27], and
show the overall cost (BL+TS) in the plots.

The data confirms that the evaluation of blended coordinates has constant time complexity, with an
additional O(log n) cost for the triangle search in the worst case, while for all other coordinates the evaluation



Figure 10: Isotoxal star polygons with 8, 14, and n vertices, respectively.

time depends linearly on n. It also shows that blended coordinates are on par with mean value coordinates,
the fastest competitor, even for small values of 7. In a nutshell, the pure evaluation of blended coordinates
is faster than that of all other coordinates for polygons with n > 10 vertices, and with triangle search the
break-even point is around n = 35.

Another observation is that blended coordinates have approximately the same timings for both sets of
test polygons. To explain this behaviour, remember that for the polygons in Figure 9, most of the query points
lie in triangles with two neighbours, while for the polygons in Figure 10, about half the query points are
contained in triangles with one neighbour, and the other half in triangles with three neighbours. Counting
instructions, it now turns out that two calls to Pseudocode 2 are about as expensive as executing Pseudocode 1
and Pseudocode 3 once each. Similar timings are actually to be expected for other polygons with the same
number of vertices, because of a simple fact that follows from Euler’s formula. If we denote the number of
triangles with k =1,2,3 neighbours in the constrained Delaunay triangulation of P by m;, then it follows
that m3 = m; — 2, that is, triangles with one and three neighbours always come in pairs. Consequently,
Pseudocodes 1 and 3 are always called similarly often for random evaluation points inside an arbitrary

n=8 n=14 n=26 n=50 n=98 o‘5sec 0.QSeC

ME
BL  0.025 0.026 0.025 0.026 0.026 0.4} —HM | ._.//

MV  0.024 0.029 0.039 0.061 0.104 03l - -]E3§E+Ts
ME 0.058 0.083 0.135 0.237 0.448 09 / 0.1
HM 0.163 0.163 0.174 0.218 0.315 “

LC 0290 0535 1028 2206 5.706 01y i. 0.057 2 -r - ogem==="]

TS 0.019 0.019 0.020 0.023 0.028 00 25 E0 75 100 00 1050 30 40 50

Figure 11: Timings for the polygons in Figure 9.

sec sec

n=8 n=14 n=26 n=50 n=98 0.5 0.2 -—
ME
BL 0.026 0.025 0.026 0.026 0.026 0.4F — v 015t
MV  0.024 0.029 0.040 0.061 0.104 03} z=BLeTS :
ME 0.058 0.083 0.136 0.240  0.451 o / 0.1}
HM 0.202 0.194 0207 0244 0.326 0-2¢ 0051
LC 0268 0501 0964 2437 8501 01r ~ i : y"ﬁ‘
T T T n L L L " n
TS 0.019 0.019 0.019 0.021  0.022 055 5 100 0I5 37 3 1 0

Figure 12: Timings for the polygons in Figure 10.
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Figure 13: Moving a vertex of the polygon (left) can lead to a different constrained Delaunay triangulation and a
discontinuous change of the coordinate functions (middle). This can be overcome by keeping the triangulation (right),
as long as no triangle folds over, even if the triangulation becomes non-Delaunay.

polygon, and the average evaluation time is therefore close to that of Pseudocode 2. Comparing the number
of instructions in this routine with those for mean value coordinates further explains the break-even point at
around n =10.

4 Conclusion

Blending approaches are frequently used in geometric modelling as a promising recipe for getting inter-
polants that inherit certain global properties from corresponding local properties and are efficient to evaluate.
Our construction follows this idea and can actually be seen as a bivariate variant of Catmull-Rom splines [4],
with the quadrilateral mean value coordinates taking the role of the local polynomial interpolants and the
compactly supported B-spline blending functions replaced by the blending functions u; per triangle. Our
construction has four crucial ingredients. First, the non-negativity and partition of unity property of the
blending functions guarantees that the properties of the local quadrilateral mean value coordinates carry
over to the blended coordinate functions for the whole polygon. Second, the k > 0 vanishing derivatives of
the blending functions across the edges of the blending region provide C* continuity of the coordinates b;.
Third, the non-negativity of mean value coordinates for arbitrary quadrilaterals is the key for obtaining b; that
are non-negative globally. And finally, the locality of the construction leads to favourable computational cost.
In principle, one could use other barycentric coordinates as the main building blocks of our construction,
as long as they are well-defined and non-negative for arbitrary quadrilaterals. However, to the best of our
knowledge, mean value coordinates are the only known coordinates with these properties and a closed-form
definition, and using computational coordinates for this purpose would compromise the efficiency of the
approach.

Blended coordinates also have a few drawbacks. First, they do not depend continuously on the vertices
of the polygon, because even a small perturbation of some v; can lead to a different constrained Delaunay
triangulation and a discontinuous change of the coordinate functions b; (see Figure 13, middle). This problem
can be overcome to some extent by keeping the triangulation, because the construction clearly works for
non-Delaunay triangulations, too (see Figure 13, right), but only as long as the triangles of the triangulation
do not flip. However, in many applications it is the data associated with the vertices of v; that changes, while
the polygon and its triangulation are fixed, and then the behaviour of the barycentric interpolant is smooth.
For example, interactively changing the vertices of the target polygon in an image warping application will
not introduce any unexpected, discontinuous behaviour. Second, even for perfectly symmetric polygons,
like the ones in Figure 10, the coordinate functions are not symmetric, because the constrained Delaunay
triangulation is not. One way to resolve this problem would be to average the coordinate functions with
respect to all possible triangulations of the polygon, but since the number of such triangulations grows
exponentially with n, this approach is computationally feasible only for polygons with a small number
of vertices. Another option is to add interior points to the triangulation of P before defining the blended
coordinates. Unfortunately, our coordinates are discontinuous at interior points, and it remains future work
to come up with a different blending construction that can deal with interior points. This would then also
open the door to an extension to 3D, where interior points may be necessary for triangulating the given
polyhedron, as in the case of the Schonhardt polyhedron [23].
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V4

Figure 14: Local vertex and edge indices used in the Pseudocodes 1 (left), 2 (centre), and 3 (right).

A Efficient evaluation of blended coordinates

In this appendix we provide the pseudocodes for the efficient evaluation of the non-zero blended coordinate
functions b; at a given point v inside a triangle A with one, two, or three overlapping quadrilaterals. In all
three pseudocodes, we use i and j to denote the vertex and edge indices as shown in Figure 14, and k is
reserved for indexing the related variables inside each quadrilateral. For the sake of clarity, we decided to use
only local indices in the pseudocodes, and the superindices “+” and “—” refer to the “next” and “previous”
local indices. Therefore, an actual implementation must take special care of correctly mapping all local
indices to the corresponding global indices. For example, in Pseudocode 2, the local indices i and it for
j =4 in the second loop over all edges are the local vertex indices 1 and 4 (see Figure 14, centre), which in
turn refer to certain global vertex indices, depending on A.

Regarding notation, we follow [12] and denote the vector from the query point v to the vertex v; by s;,
the length of this vector by r;, the signed area of the triangle [v;, v;+, v] by A;/2, and the dot product of s; and
s;+ by D;. However, instead of computing the tangents of the half-angles between s; and s;. via

l1—cos(a;) rirn—D;
sin(ai) B Ai

t; =tan(a;/2)=

’

we use the formula .
sin(a;) A;

t; =tan(a;/2)= = ,
! (@:/2) 1+cos(a;) r1ir++D;

which works without exceptions even for interior query points with A; =0.

Pseudocode 1 Case: one quadrilateral
1: function b(v)

2 fori=1to4do > Iterate over all vertices
3: S =Vv;—V

4 ri =1l

5: for j=1to4do > Iterate over all edges
6: Aj =det(s;, s;+)

7: D; :=(s;, §i+)

8: tj =A;/(rir+Dj)

9: W:=0 > Mean value weights
10: fork=1to4do

11: wy = (tj-+1t;)/ 1

12: W =W+ w,

13: fori=1to4do > Blended coordinates
14: b;:=w, /W
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Pseudocode 2 Case: two overlapping quadrilaterals

1: function b(v)

2:

N DO hw

10:
11:
12:

13:
14:

15:

16:
17:

18:
19:

20:

fori=1to5do
S =Uv;—v
ri =8l
for j=1to7do
Aj =det(s;, s;+)
Dj = <Sir Si+>
tj ::Aj/(r,- T+ +D])

A=A +A+As,  ay=A A ay=A A
or=(qla), oy=qla;), ¥ =0,+0,
U=01/%, ppi=03/%
W =0, W,:=0
fork=1to4do
w} ::(tjl,+ t].l)/rl.l, wi :=(t]?,+ t]?)/rl.2
W =W +w), W, =Wy + wi
fork=1to4do
bl =wl /W, b =wi /W,

fori=1to3do
b;:= b} iy + b 1

by := b41.U1» bs := b42 Uz

> Iterate over all vertices

> Iterate over all edges

> Blending functions

> Mean value weights for both quadrilaterals

> Mean value coordinates

> Blended coordinates

Pseudocode 3 Case: three overlapping quadrilaterals

1: function b(v)

2:
3:
4:

10:
11:

12:
13:
14:

15:

16:
17:

18:
19:

20:

fori=1to6do
S ==v;—vV
ri = ls:ll

for j=1to9do
Aj :=det(s;, s;+)

az:==Az/ A,

> Iterate over all vertices

> Iterate over all edges

> Blending functions
Y =0,4+0,+0;

> Mean value weights for all three quadrilaterals
w;p = (t]?, + t]?)/ r
W =W+ w}

> Mean value coordinates
3 ._ .3
b =w;/ W

> Blended coordinates

Dj = <Si’ S,'+>

t] :=Aj/(rl~r,-++Dj)
A :=A1+A2+A3, a, ZZAI/A, ay :=A2/A,
or=q(a))q(as), o:=qla))q(a), o0s:=q(a))q(as),
Ur:=01/%, Uz:=03/%, Uz:=03/%
W =0, W;:=0, W;3:=0
fork=1to4do

wy =(t]+t])/ 1}, wi =(t7 +3)/ 17,

W =W, +w}, W = Ws+ wi,
fork=1to4do

bl =wy /W, bt =w?/ W,
fori=1to3do

b; = bty + b i + b
b43=b41.U1» b5:=bfu2, beizbf.us
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