
Blended barycentric coordinates
Dmitry Anisimov · Daniele Panozzo · Kai Hormann

Abstract

Generalized barycentric coordinates are widely used to represent a point inside a polygon
as an affine combination of the polygon’s vertices, and it is desirable to have coordinates
that are non-negative, smooth, and locally supported. Unfortunately, the existing coordinate
functions that satisfy all these properties do not have a simple analytic expression, making
them expensive to evaluate and difficult to differentiate. In this paper, we present a new
closed-form construction of generalized barycentric coordinates, which are non-negative,
smooth, and locally supported. Our construction is based on the idea of blending mean
value coordinates over the triangles of the constrained Delaunay triangulation of the input
polygon, which needs to be computed in a preprocessing step. We experimentally show that
our construction compares favourably with other generalized barycentric coordinates, both
in terms of quality and computational cost.

Citation Info

Journal
Computer Aided
Geometric Design

Volume
52–53, March–April 2017

Pages
205–216

Note
Proceedings of GMP

1 Introduction

Given a planar n-sided simple polygon P ⊂ R2 with n ≥ 3 vertices v1, . . . , vn ∈ R2, the n functions b =
[b1, . . . , bn]: P →Rn are called generalized barycentric coordinates if they satisfy the partition of unity property

n
∑

i=1

bi (v) = 1 ∀v ∈ P (1)

and the linear reproduction property

n
∑

i=1

bi (v)vi = v ∀v ∈ P. (2)

In addition, it is often desirable for the functions bi to be non-negative,

bi (v)≥ 0, i = 1, . . . , n ∀v ∈ P, (3)

and to have the Lagrange property

bi (v j) =δi , j =

¨

0, if i 6= j ,

1, if i = j ,
i , j = 1, . . . , n , (4)

where δi , j is the Kronecker delta. We also say that the coordinate functions are smooth, if

bi ∈C k , k > 0, (5)

and local, if the functions bi have small support

supp(bi) = {v ∈ P : bi (v) 6= 0}. (6)

For n = 3, when P is a triangle, it is known [21] that the barycentric coordinates of v are uniquely de-
termined by (1) and (2). These classical barycentric coordinates are linear functions that satisfy all properties
above. However, for polygons with n > 3 vertices, the choice of bi is no longer unique.

In recent years, many different constructions of barycentric coordinates for polygons with n > 3 vertices
have been proposed. Some of these coordinates are successfully used for colour interpolation [20], image
warping [12], shape deformation [15], and many other applications. Nevertheless, the question of finding a
simple closed-form construction of the functions bi , which satisfy all properties above is still open.

1

1.1 Related work

Wachspress [26] was one of the first who proposed a construction of barycentric coordinate functions
for polygons with n > 3 vertices. These Wachspress coordinates are rational functions and have a simple
closed form [20], but they are well-defined only for convex polygons. The same holds for discrete harmonic
coordinates [22, 7], which arise from the standard piecewise linear finite element approximation of the
Laplace equation.

The construction of discrete harmonic coordinates suggests that different properties of harmonic func-
tions can be exploited to derive generalized barycentric coordinates, and Floater [8] uses the circumferential
mean value property of harmonic functions to derive mean value coordinates, which have a simple closed
form and are well-defined for any concave polygon [12]. They are positive inside the kernel of star-shaped
polygons, satisfy the Lagrange property, and are smooth everywhere in the plane, except at the vertices vi ,
where they are only C 0 continuous. Other barycentric coordinate functions with a closed-form definition,
which are well-defined for concave polygons and possibly negative inside these polygons, are metric [18, 25],
Poisson [16], and Gordon–Wixom coordinates [10, 2]. To the best of our knowledge, the only coordinate
functions with a closed form that guarantee positivity inside arbitrary concave polygons are positive mean
value [17] and positive Gordon–Wixom coordinates [19], but they are not smooth. Another recent generaliza-
tion of barycentric coordinates with a closed form is based on power diagrams [3], but the computation of
these coordinates is quite involved.

Neither of the above closed-form constructions results in positive and smooth coordinates for arbitrary
concave polygons, but it is possible to obtain generalized barycentric coordinates with both properties
numerically by solving certain optimization problems. Examples of such computational coordinates include
harmonic [9, 15], maximum entropy [13], and local barycentric coordinates [28]. These coordinates possess
all important properties above, but the usual approximation of harmonic and local barycentric coordinates
involves a triangulation of the domain, and the obtained coordinates are only piecewise linear functions.
Subdivision can be used to make these coordinates C 1 continuous [1], but this approach is computationally
involved. Instead, maximum entropy coordinates are smooth and can be evaluated efficiently with Newton’s
method, but they are globally supported.

All these constructions have in common that they depend on the number of the polygon’s vertices, and
the time complexity for a single evaluation of the coordinate functions at some v ∈ P is at least O (n).

1.2 Contributions

We propose a novel construction of generalized barycentric coordinates for arbitrary simple polygons, which
are non-negative, smooth, and locally supported. These coordinates have a closed-form definition and can
be evaluated in constant time, due to the local support. Note that the constrained Delaunay triangulation of
the polygon needs to be computed in a preprocessing step, and depending on the application, an additional
cost on the order of O (log n) for each evaluation may apply, but even in this case, the computation time
compares favourably to that of other coordinates.

The proposed construction is based on the idea of blending mean value coordinates over the triangles
of the constrained Delaunay triangulation of the input polygon with appropriate blending functions. We
describe this idea and the blending functions in detail in Section 2 and provide pseudocode for the efficient
implementation of our coordinates in A. We further compare them with other coordinates in Section 3 and
discuss the proposed approach and its limitations in Section 4.

2 Blended barycentric coordinates

It is known [14] that mean value coordinates are always positive inside any quadrilateral. We first show how
this property can be exploited to obtain non-negative barycentric coordinates for pentagons (Section 2.1),
before extending this construction to hexagons (Section 2.2) and to arbitrary polygons (Section 2.3).

2.1 Coordinates for pentagons

Let P = [v1, . . . , v5]⊂R2 be a pentagon in the plane. Without loss of generality, we assume that it can be split
into three triangles41 = [v2, v3, v4],42 = [v1, v2, v4], and43 = [v1, v4, v5] (see Figure 1, left). Alternatively, this

2

v5v4

v2

v3

v1

43

41

P42

v6

v5

v4
v3

v2

v1

4341

P

42

44

v1

v2 v3

v4

v5

v6

P

41

42

43

44

Figure 1: Pentagons can be split into three triangles (left), and hexagons can be split into four triangles (centre and
right).

triangulation can be seen as two overlapping quadrilaterals

�1 =41 ∪42 = [v1, v2, v3, v4],

�2 =42 ∪43 = [v1, v2, v4, v5]

with the common triangle42. We denote by

b1 = [b
1
1 , b 1

2 , b 1
3 , b 1

4]: �1→R4

the mean value coordinates with respect to the quadrilateral �1 and by

b2 = [b
2
1 , b 2

2 , b 2
4 , b 2

5]: �2→R4

those with respect to the quadrilateral �2. We also consider two blending functions

µ1,µ2 :42 \ {v4}→ [0, 1]

such that

µ1(v) =

¨

1, v ∈ [v2, v4),
0, v ∈ (v4, v1],

, µ2(v) =

¨

0, v ∈ [v2, v4),
1, v ∈ (v4, v1],

,

and µ1(v) +µ2(v) = 1 for any v ∈ 42 \ {v4}. Since µ1 and µ2 are not defined at v4 and actually diverge as
v → v4, we exclude this vertex from the definition, but, as we will show later, this does not affect the final
construction of our barycentric coordinates.

To construct µ1 and µ2, we follow a simple procedure. Given the triangle 42, we first determine the
classical barycentric coordinates λ1,2 :42→ [0, 1] corresponding to v2 and v1 as

λ1(v) =
Area[v1, v, v4]
Area[v1, v2, v4]

, λ2(v) =
Area[v, v2, v4]
Area[v1, v2, v4]

∀v ∈42.

In order to guarantee smooth coordinates (see details below), we then choose a smooth monotonic function
q : [0, 1]→ [0, 1] and define the blending functions as

µ1 =
σ1

σ1+σ2
, µ2 =

σ2

σ1+σ2
, σ1 = q ◦λ1, σ2 = q ◦λ2. (7)

Using the quadrilateral mean value coordinates b1 and b2 and the blending functions µ1 and µ2, we
finally define the blended coordinate functions bi : P \ {v4}→R, i = 1, . . . , 5 (see Figure 2) as

bi (v) =











b 1
i (v), v ∈41,

b 1
i (v)µ1(v) + b 2

i (v)µ2(v), v ∈42 \ {v4},
b 2

i (v), v ∈43,

i = 1, 2, 4,

b3(v) =











b 1
3 (v), v ∈41,

b 1
3 (v)µ1(v), v ∈42 \ {v4},

0, v ∈43,

b5(v) =











0, v ∈41,

b 2
5 (v)µ2(v), v ∈42 \ {v4},

b 2
5 (v), v ∈43.

(8)

3

Figure 2: Construction of blended coordinates for the pentagon in Figure 1 (left). The coordinate function b3 (left) is
defined by multiplying the mean value coordinate function b 1

3 for �1 with the blending function µ1 over42 (outlined in
grey). To construct b4 (right), we likewise multiply the mean value coordinates b 1

4 and b 2
4 with µ1 and µ2, respectively,

and add the results. The colour range shows function values between 0 (blue) and 1 (red), and the white curves are the
contour lines at 0.1, 0.2, . . . , 0.9.

These functions satisfy the partition of unity property (1), because

v ∈41 ⇒
5
∑

i=1

bi (v) =
∑

i=1,2,3,4

b 1
i (v) = 1,

v ∈42 \ {v4} ⇒
5
∑

i=1

bi (v) =
∑

i=1,2,3,4

b 1
i (v)µ1(v) +
∑

i=1,2,4,5

b 2
i (v)µ2(v) =µ1(v) +µ2(v) = 1,

v ∈43 ⇒
5
∑

i=1

bi (v) =
∑

i=1,2,4,5

b 2
i (v) = 1

and the linear reproduction property (2), because

v ∈41 ⇒
5
∑

i=1

bi (v)vi =
∑

i=1,2,3,4

b 1
i (v)vi = v,

v ∈42 \ {v4} ⇒
5
∑

i=1

bi (v)vi =
∑

i=1,2,3,4

b 1
i (v)viµ1(v) +

∑

i=1,2,4,5

b 2
i (v)viµ2(v) = vµ1(v) + vµ2(v) = v,

v ∈43 ⇒
5
∑

i=1

bi (v)vi =
∑

i=1,2,4,5

b 2
i (v)vi = v.

It further follows directly from the definition that the functions bi satisfy the non-negativity property (3)
and have the Lagrange property (4) at all v j for j 6= 4. To prove the Lagrange property at v4, we first observe
that

min{b 1
i (v), b 2

i (v)} ≤ b 1
i (v)µ1(v) + b 2

i (v)µ2(v)≤max{b 1
i (v), b 2

i (v)} ∀v ∈42 \ {v4}

for i = 1, 2, 4, because µ1(v) +µ2(v) = 1, and

0≤ b 1
3 (v)µ1(v)≤ b 1

3 (v), 0≤ b 2
5 (v)µ2(v)≤ b 2

5 (v) ∀v ∈42 \ {v4},

since µ1(v),µ2(v) ∈ [0,1]. As all lower and upper bounds converge to δi ,4 as v approaches v4, we conclude
that

lim
v→v4

bi (v) =δi ,4

for all i = 1, . . . , 5.
If q has k > 0 vanishing derivatives at 0 and at 1, then the construction above guarantees that µ1 and µ2

blend with C k continuity into the constant functions with values 0 or 1 along the edges [v2, v4) and (v4, v1],
which in turn implies the C k continuity of the coordinate functions bi . The simplest choices of q for k = 1
and k = 2 (see Figure 3) are the polynomials

q1(x) = 3x 2−2x 3 and q2(x) = 6x 5−15x 4+10x 3 ∀ x ∈ [0, 1].

4

q1
q2

1

0 1

0.5

0.5

Figure 3: Examples of polynomial functions q1 and q2 used for the construction of C 1 and C 2 blended coordinates,
respectively.

Figure 4: The construction of the blended coordinate function b3 for the hexagon in Figure 1 (right) involves three
blending functions over44 (outlined in grey) for combining the quadrilateral mean value coordinates b 1

3 , b 2
3 , and b 3

3 .

The function q1 was used for the examples in Figures 2 and 4, and a comparison between C 1 and C 2

continuous coordinates, constructed with q1 and q2, respectively, can be found in Figures 6, 7, and 8.

2.2 Coordinates for hexagons

To construct blended coordinates for a planar hexagon, a similar approach can be used after splitting the
hexagon into four triangles. If all triangles of the split have only one or two neighbouring triangles (see
Figure 1, centre), then the blended coordinates are constructed as described in Section 2.1. However, it
can also happen that one of the triangles has three neighbours (see Figure 1, right). Given such a hexagon
P = [v1, . . . , v6]⊂R2 in the plane, let

�1 =41 ∪44 = [v1, v2, v3, v5],

�2 =42 ∪44 = [v1, v3, v5, v6],

�3 =43 ∪44 = [v1, v3, v4, v5]

be the quadrilaterals that overlap over the triangle44 = [v1, v3, v5]. As in Section 2.1, we first determine three
sets of mean value coordinates b1, b2, and b3 for these quadrilaterals, respectively, and then consider the
blending functions

µ1,µ2,µ3 :44 \ {v1, v3, v5}→ [0, 1],

such that

µ1(v) =

¨

1, v ∈ (v1, v3),
0, v ∈ (v3, v5)∪ (v5, v1),

µ2(v) =

¨

1, v ∈ (v5, v1),
0, v ∈ (v1, v3)∪ (v3, v5),

µ3(v) =

¨

1, v ∈ (v3, v5),
0, v ∈ (v5, v1)∪ (v1, v3),

and µ1(v) +µ2(v) +µ3(v) = 1 for any v ∈44 \ {v1, v3, v5}. Again, µ1, µ2, and µ3 are not defined at the vertices
of44, but this does not affect the final construction of generalized barycentric coordinates. Now, given the
triangle44, if we define the classical barycentric coordinates λ1,2,3 :44→ [0, 1] corresponding to v5, v3, and
v1 as

λ1(v) =
Area[v1, v3, v]
Area[v1, v3, v5]

, λ2(v) =
Area[v1, v, v5]
Area[v1, v3, v5]

, λ3(v) =
Area[v, v3, v5]
Area[v1, v3, v5]

∀v ∈44,

5

P

44

43

42

41

45

46

48

47

v1

Figure 5: Example of a general polygon and its constrained Delaunay triangulation.

then we can construct the blending functions as

µ1 =
σ1

σ1+σ2+σ3
, µ2 =

σ2

σ1+σ2+σ3
, µ3 =

σ3

σ1+σ2+σ3
(9)

with
σ1 = (q ◦λ2)(q ◦λ3), σ2 = (q ◦λ3)(q ◦λ1), σ3 = (q ◦λ1)(q ◦λ2),

and q as defined in Section 2.1. The construction of the blended coordinate functions bi : P \{v1, v3, v5}→R,
i = 1, . . . , 6 (see Figure 4) is then analogous to the construction (8), and with the same arguments as above it
can be shown that these functions satisfy the key properties (1) and (2), are non-negative, have the Lagrange
property, even at the vertices v1, v3, and v5, and are smooth.

2.3 Coordinates for arbitrary polygons

We are now ready to present the construction of blended barycentric coordinates for arbitrary simple
polygons. Given the constrained Delaunay triangulation4= {41, . . . ,4m} of a planar polygon P = [v1, . . . , vn]
with n > 6 vertices, we consider all quadrilaterals defined by two triangles that share an interior edge,
determine the mean value coordinates with respect to these quadrilaterals, and blend them as explained
above. For example, for the polygon in Figure 5, the quadrilateral mean value coordinates are blended over
the triangles41, . . . ,46 as in Section 2.1 and over the triangles47 and48 as in Section 2.2. In this way, we
obtain coordinate functions with the same properties as before.

Since it is lengthy to write down the analytic expressions of the blended coordinate functions bi as
in (8), we do not present these formulas, but rather discuss how to evaluate them efficiently at any point v
inside the polygon. Suppose we know the triangle4 j ∈4 that contains v . We then compute the blended
coordinates following a simple procedure with two steps. In the first step we find the k triangles in4 that
share an edge with 4 j . In the second step, depending on the number k ∈ {1,2,3}, we evaluate the k + 3
functions bi that correspond to the k +3 vertices of the k quadrilaterals that overlap at4 j , using one of the
three routines given in A. All other coordinates can be safely set to zero. On the one hand, this implies that
the time complexity for the evaluation of all coordinates at any v is O (1). On the other hand, it shows the
locality of blended coordinates, because the support supp(bi) of the coordinate function bi is just the union
of the triangles adjacent to vi and their neighbouring triangles. For example, the support of b1 in Figure 5 is
supp(b1) =41 ∪45 ∪47.

In addition to the constant cost of this evaluation procedure, the constrained Delaunay triangulation4
of P needs to be computed in a preprocessing step in O (n log n) time, and, depending on the application,
some time may be spent on finding the triangle4 j that contains v . We shall briefly discuss three possible
scenarios. To generate the images in Figures 6, 7, and 8, we used seven linear subdivision steps to refine
4, evaluated the coordinates at the vertices of this refined triangulation, and rendered the result. In this
scenario, careful book-keeping during the subdivision process provides4 j for free, and the same holds in
any application that allows to choose the evaluation points v per triangle of4. Another scenario is image
warping, where the coordinates need to be evaluated for each pixel of the warped image. In this situation,4 j

has to be found only once for the first pixel, and subsequently a local search with constant time complexity
can be used to find4 j for the next pixel. Such a local search can also be used to evaluate the coordinates at
the vertices of a (dense) triangulation of the polygon, if the vertices are visited, for example, by breadth-first
traversal. In the worst case, if the application requires to compute coordinates at truly random points v ,
then4 j can be found in optimal O (log n) time [6] by using a hierarchy of Delaunay triangulations, and we
report some timings for this situation below.

6

C 1 BL C 2 BL MV ME HM LC

Figure 6: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1, 0.2, . . . , 0.9 (and at −0.2 and −0.1 for mean value coordinates), the contour line at 10−4

is shown in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon for
blended coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for mean
value coordinates.

3 Comparison

Figures 6, 7, and 8 show a comparison of C 1 and C 2 continuous blended (BL) coordinates with mean value
(MV), maximum entropy (ME), harmonic (HM), and local (LC) barycentric coordinates for three different
polygons (with 7, 13, and 39 vertices, respectively) and coordinate functions associated to convex and concave
vertices. While mean value coordinates can be negative inside the polygon, blended coordinates are always
positive by definition. Maximum entropy and harmonic coordinates are also positive inside the polygon,
but they are globally supported and can be computed only numerically. Instead, blended coordinates are
local and have a closed form. Local barycentric coordinates also fulfill the locality requirement, but they can
again be computed only numerically, and the exact support of these coordinate functions is not known. The
numerical solver used to compute them generates small function values even outside the probable support,

C 1 BL C 2 BL MV ME HM LC

Figure 7: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1,0.2, . . . ,0.9 (and at −0.3,−0.2,−0.1 for mean value coordinates), the contour line at
10−4 is shown in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon
for blended coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for
mean value coordinates.

7

C 1 BL C 2 BL MV ME HM LC

Figure 8: Comparison of different coordinate functions for a convex (top) and a concave (bottom) vertex. The white
curves are the contour lines at 0.1, 0.2, . . . , 0.9 (and at −0.1 for mean value coordinates), the contour line at 10−4 is shown
in green, and the orange line marks the support. The constrained Delaunay triangulation of the polygon for blended
coordinates is outlined in grey, and the grey/magenta colour range shows the negative function values for mean value
coordinates.

and Zhang et al. [28] suggest to treat all values below 10−4 as numerically zero. In turn, the exact support of
blended coordinate functions is clearly defined.

We implemented all coordinates above in C++ on a MacBook Pro with 2.4 GHz Intel Core i7 processor
and 8 GB RAM. For blended coordinates, we first build the constrained Delaunay triangulation of the polygon
with Triangle [24] and then evaluate the coordinate functions as explained above, using the pseudocode in A.
For mean value and maximum entropy coordinates, we implemented the pseudocodes given in [12, Section
5] and [13, Section 5], respectively. For harmonic coordinates, we use the sparse Cholesky decomposition in
Eigen [11] to solve the linear system arising from the standard finite element discretization of the Laplace
equation with Dirichlet boundary conditions, and local barycentric coordinates are computed with the code
provided by Deng and Liu [5].

To compare the performance, we created two sets of test polygons. The first set is shown in Figure 9 and
consists of 5 concave polygons with n = 6l +2 vertices that are composed by concatenating l = 2p copies
of the piece shown on the left, for p = 0, . . . ,4. The constrained Delaunay triangulations of these polygons
have exactly 2 triangles with one neighbour, 6l − 2 triangles with two neighbours, and no triangle with
three neighbours. The second set in Figure 10 consists of 5 isotoxal star polygons with the same numbers of
vertices. In this case, the constrained Delaunay triangulations have 3l +1 triangles with one neighbour, no
triangles with two neighbours, and 3l −1 triangles with three neighbours.

For all test polygons, we evaluated the different coordinates at the 50,000 interior vertices of a dense
Delaunay triangulation, and the results are summarized in Figures 11 and 12. In case of blended coordinates,
the given times correspond to the construction of the constrained Delaunay triangulation, which is less than
0.0004 sec, even for n = 98, plus the evaluation of the n coordinate functions at all evaluation points, where
the difference between using q1 or q2 was not noticeable. For mean value and maximum entropy coordinates,
we report the pure evaluation times, and for harmonic coordinates we added the times for assembling the
matrix, factorizing it, and solving the linear system for all n coordinates with back substitution. In case
of local barycentric coordinates, the solver did not converge for such a dense triangulation, and so we
decided to use instead a Delaunay triangulation with only 500 interior vertices. The given times include
the initialization of the solver and running it for a fixed number of 500 iterations, which is barely enough to
guarantee convergence for n = 8. Even for this comparatively small number of interior vertices, the timings
are about one order of magnitude slower, and they would be even worse if the solver would be allowed to
run until convergence. To give an idea about the worst-case scenario for blended coordinates regarding the
additional cost for finding the triangles that contain the query points, we also report the time needed for this
triangle search (TS) with the hierarchical Delaunay triangulation strategy implemented in CGAL [27], and
show the overall cost (BL+TS) in the plots.

The data confirms that the evaluation of blended coordinates has constant time complexity, with an
additional O (log n) cost for the triangle search in the worst case, while for all other coordinates the evaluation

8

: : : : :

Figure 9: Concave test polygons, composed of 1, 2, and l pieces with 8, 14, and n = 6l +2 vertices, respectively.

: : : : :

:::::

Figure 10: Isotoxal star polygons with 8, 14, and n vertices, respectively.

time depends linearly on n . It also shows that blended coordinates are on par with mean value coordinates,
the fastest competitor, even for small values of n . In a nutshell, the pure evaluation of blended coordinates
is faster than that of all other coordinates for polygons with n ≥ 10 vertices, and with triangle search the
break-even point is around n = 35.

Another observation is that blended coordinates have approximately the same timings for both sets of
test polygons. To explain this behaviour, remember that for the polygons in Figure 9, most of the query points
lie in triangles with two neighbours, while for the polygons in Figure 10, about half the query points are
contained in triangles with one neighbour, and the other half in triangles with three neighbours. Counting
instructions, it now turns out that two calls to Pseudocode 2 are about as expensive as executing Pseudocode 1
and Pseudocode 3 once each. Similar timings are actually to be expected for other polygons with the same
number of vertices, because of a simple fact that follows from Euler’s formula. If we denote the number of
triangles with k = 1,2,3 neighbours in the constrained Delaunay triangulation of P by mk , then it follows
that m3 = m1 − 2, that is, triangles with one and three neighbours always come in pairs. Consequently,
Pseudocodes 1 and 3 are always called similarly often for random evaluation points inside an arbitrary

n = 8 n = 14 n = 26 n = 50 n = 98

BL 0.025 0.026 0.025 0.026 0.026
MV 0.024 0.029 0.039 0.061 0.104
ME 0.058 0.083 0.135 0.237 0.448
HM 0.163 0.163 0.174 0.218 0.315
LC 0.290 0.535 1.028 2.206 5.706
TS 0.019 0.019 0.020 0.023 0.028

ME
HM
MV
BL+TS
BL

0.5

0

0.4

0.3

0.2

0.1

0 100755025

sec

n 0

0.2

0.15

0.1

0.05

0 50302010 40

sec

n

Figure 11: Timings for the polygons in Figure 9.

n = 8 n = 14 n = 26 n = 50 n = 98

BL 0.026 0.025 0.026 0.026 0.026
MV 0.024 0.029 0.040 0.061 0.104
ME 0.058 0.083 0.136 0.240 0.451
HM 0.202 0.194 0.207 0.244 0.326
LC 0.268 0.501 0.964 2.437 8.501
TS 0.019 0.019 0.019 0.021 0.022

ME
HM
MV
BL+TS
BL

0.5

0

0.4

0.3

0.2

0.1

0 100755025

sec

n 0

0.2

0.15

0.1

0.05

0 50302010 40

sec

n

Figure 12: Timings for the polygons in Figure 10.

9

Figure 13: Moving a vertex of the polygon (left) can lead to a different constrained Delaunay triangulation and a
discontinuous change of the coordinate functions (middle). This can be overcome by keeping the triangulation (right),
as long as no triangle folds over, even if the triangulation becomes non-Delaunay.

polygon, and the average evaluation time is therefore close to that of Pseudocode 2. Comparing the number
of instructions in this routine with those for mean value coordinates further explains the break-even point at
around n = 10.

4 Conclusion

Blending approaches are frequently used in geometric modelling as a promising recipe for getting inter-
polants that inherit certain global properties from corresponding local properties and are efficient to evaluate.
Our construction follows this idea and can actually be seen as a bivariate variant of Catmull–Rom splines [4],
with the quadrilateral mean value coordinates taking the role of the local polynomial interpolants and the
compactly supported B-spline blending functions replaced by the blending functions µi per triangle. Our
construction has four crucial ingredients. First, the non-negativity and partition of unity property of the
blending functions guarantees that the properties of the local quadrilateral mean value coordinates carry
over to the blended coordinate functions for the whole polygon. Second, the k > 0 vanishing derivatives of
the blending functions across the edges of the blending region provide C k continuity of the coordinates bi .
Third, the non-negativity of mean value coordinates for arbitrary quadrilaterals is the key for obtaining bi that
are non-negative globally. And finally, the locality of the construction leads to favourable computational cost.
In principle, one could use other barycentric coordinates as the main building blocks of our construction,
as long as they are well-defined and non-negative for arbitrary quadrilaterals. However, to the best of our
knowledge, mean value coordinates are the only known coordinates with these properties and a closed-form
definition, and using computational coordinates for this purpose would compromise the efficiency of the
approach.

Blended coordinates also have a few drawbacks. First, they do not depend continuously on the vertices
of the polygon, because even a small perturbation of some vi can lead to a different constrained Delaunay
triangulation and a discontinuous change of the coordinate functions bi (see Figure 13, middle). This problem
can be overcome to some extent by keeping the triangulation, because the construction clearly works for
non-Delaunay triangulations, too (see Figure 13, right), but only as long as the triangles of the triangulation
do not flip. However, in many applications it is the data associated with the vertices of vi that changes, while
the polygon and its triangulation are fixed, and then the behaviour of the barycentric interpolant is smooth.
For example, interactively changing the vertices of the target polygon in an image warping application will
not introduce any unexpected, discontinuous behaviour. Second, even for perfectly symmetric polygons,
like the ones in Figure 10, the coordinate functions are not symmetric, because the constrained Delaunay
triangulation is not. One way to resolve this problem would be to average the coordinate functions with
respect to all possible triangulations of the polygon, but since the number of such triangulations grows
exponentially with n , this approach is computationally feasible only for polygons with a small number
of vertices. Another option is to add interior points to the triangulation of P before defining the blended
coordinates. Unfortunately, our coordinates are discontinuous at interior points, and it remains future work
to come up with a different blending construction that can deal with interior points. This would then also
open the door to an extension to 3D, where interior points may be necessary for triangulating the given
polyhedron, as in the case of the Schönhardt polyhedron [23].

Acknowledgements

We thank the anonymous reviewers for their valuable comments and suggestions, which helped to improve
this paper. We further thank Teseo Schneider and Olga Sorkine-Hornung for useful discussions.

10

References

[1] D. Anisimov, C. Deng, and K. Hormann. Subdividing barycentric coordinates. Computer Aided Geometric Design,
43:172–185, 2016.

[2] A. Belyaev. On transfinite barycentric coordinates. In Proceedings of SGP, pages 89–99, 2006.

[3] M. Budninskiy, B. Liu, Y. Tong, and M. Desbrun. Power coordinates: A geometric construction of barycentric
coordinates on convex polytopes. ACM Transactions on Graphics, 35(6):Article 241, 11 pages, 2016.

[4] E. Catmull and R. Rom. A class of local interpolating splines. In Computer Aided Geometric Design, pages 317–326.
Academic Press, New York, 1974.

[5] B. Deng and Z. Liu. Local barycentric coordinates solver. https://github.com/bldeng/LBC, Mar. 2015. [Online;
accessed 28-September-2016].

[6] O. Devillers. Improved incremental randomized Delaunay triangulation. In Proceedings of SoCG, pages 106–115,
1998.

[7] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle. Multiresolution analysis of arbitrary
meshes. In Proceedings of SIGGRAPH, pages 173–182, 1995.

[8] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design, 20(1):19–27, 2003.

[9] M. S. Floater, K. Hormann, and G. Kós. A general construction of barycentric coordinates over convex polygons.
Advances in Computational Mathematics, 24(1–4):311–331, 2006.

[10] W. J. Gordon and J. A. Wixom. Pseudo-harmonic interpolation on convex domains. SIAM Journal on Numerical
Analysis, 11(5):909–933, 1974.

[11] G. Guennebaud, B. Jacob, et al. Eigen 3.2.9. http://eigen.tuxfamily.org, July 2016. [Online; accessed
28-September-2016].

[12] K. Hormann and M. S. Floater. Mean value coordinates for arbitrary planar polygons. ACM Transactions on Graphics,
25(4):1424–1441, 2006.

[13] K. Hormann and N. Sukumar. Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum,
27(5):1513–1520, 2008.

[14] K. Hormann and M. Tarini. A quadrilateral rendering primitive. In Proceedings of Graphics Hardware, pages 7–14,
2004.

[15] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic coordinates for character articulation. ACM
Transactions on Graphics, 26(3):Article 71, 9 pages, 2007.

[16] X.-Y. Li and S.-M. Hu. Poisson coordinates. IEEE Transactions on Visualization and Computer Graphics, 19(2):344–
352, 2013.

[17] Y. Lipman, J. Kopf, D. Cohen-Or, and D. Levin. GPU-assisted positive mean value coordinates for mesh deformations.
In Proceedings of SGP, pages 117–123, 2007.

[18] E. A. Malsch, J. J. Lin, and G. Dasgupta. Smooth two dimensional interpolants: A recipe for all polygons. Journal of
Graphics Tools, 10(2):27–39, 2005.

[19] J. Manson, K. Li, and S. Schaefer. Positive Gordon–Wixom coordinates. Computer-Aided Design, 43(11):1422–1426,
2011.

[20] M. Meyer, A. Barr, H. Lee, and M. Desbrun. Generalized barycentric coordinates on irregular polygons. Journal of
Graphics Tools, 7(1):13–22, 2002.

[21] A. F. Möbius. Der barycentrische Calcul. Johann Ambrosius Barth Verlag, Leipzig, 1827.

[22] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics,
2(1):15–36, 1993.

[23] E. Schönhardt. Über die Zerlegung von Dreieckspolyedern in Tetraeder. Mathematische Annalen, 98(1):309–312,
1928.

[24] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In M. C. Lin and
D. Manocha, editors, Applied Computational Geometry: Towards Geometric Engineering, volume 1148 of Lecture
Notes in Computer Science, pages 203–222. Springer, Berlin, 1996.

[25] N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal finite element interpolants. Archives
of Computational Methods in Engineering, 13(1):129–163, 2006.

[26] E. L. Wachspress. A Rational Finite Element Basis, volume 114 of Mathematics in Science and Engineering. Academic
Press, New York, 1975.

[27] M. Yvinec. CGAL 4.9: 2D Triangulation. http://doc.cgal.org/4.9/Manual/packages.html#
PkgTriangulation2Summary, Sept. 2016. [Online; accessed 28-September-2016].

[28] J. Zhang, B. Deng, Z. Liu, G. Patanè, S. Bouaziz, K. Hormann, and L. Liu. Local barycentric coordinates. ACM
Transactions on Graphics, 33(6):Article 188, 12 pages, 2014.

11

v3

v1

v2

v4

1

2

3

4

v5v2

v1

v4

v3

1

2

3

4

5

6

7

v6

v3

v5
v2

v4

v1

1 2

3

4

5 6

7

894 4

4

Figure 14: Local vertex and edge indices used in the Pseudocodes 1 (left), 2 (centre), and 3 (right).

A Efficient evaluation of blended coordinates

In this appendix we provide the pseudocodes for the efficient evaluation of the non-zero blended coordinate
functions bi at a given point v inside a triangle4with one, two, or three overlapping quadrilaterals. In all
three pseudocodes, we use i and j to denote the vertex and edge indices as shown in Figure 14, and k is
reserved for indexing the related variables inside each quadrilateral. For the sake of clarity, we decided to use
only local indices in the pseudocodes, and the superindices “+” and “−” refer to the “next” and “previous”
local indices. Therefore, an actual implementation must take special care of correctly mapping all local
indices to the corresponding global indices. For example, in Pseudocode 2, the local indices i and i+ for
j = 4 in the second loop over all edges are the local vertex indices 1 and 4 (see Figure 14, centre), which in
turn refer to certain global vertex indices, depending on4.

Regarding notation, we follow [12] and denote the vector from the query point v to the vertex vi by si ,
the length of this vector by ri , the signed area of the triangle [vi , vi+ , v] by Ai /2, and the dot product of si and
si+ by Di . However, instead of computing the tangents of the half-angles between si and si+ via

ti = tan(αi /2) =
1− cos(αi)

sin(αi)
=

ri ri+ −Di

Ai
,

we use the formula

ti = tan(αi /2) =
sin(αi)

1+ cos(αi)
=

Ai

ri ri+ +Di
,

which works without exceptions even for interior query points with Ai = 0.

Pseudocode 1 Case: one quadrilateral

1: function b(v)

2: for i = 1 to 4 do . Iterate over all vertices
3: si := vi − v
4: ri := ‖si ‖
5: for j = 1 to 4 do . Iterate over all edges
6: A j := det(si , si+)
7: Dj := 〈si , si+〉
8: t j := A j / (ri ri+ +Dj)

9: W := 0 .Mean value weights
10: for k = 1 to 4 do
11: wk := (t j− + t j)/ ri

12: W :=W +wk

13: for i = 1 to 4 do . Blended coordinates
14: bi :=wk /W

12

Pseudocode 2 Case: two overlapping quadrilaterals

1: function b(v)

2: for i = 1 to 5 do . Iterate over all vertices
3: si := vi − v
4: ri := ‖si ‖
5: for j = 1 to 7 do . Iterate over all edges
6: A j := det(si , si+)
7: Dj := 〈si , si+〉
8: t j := A j / (ri ri+ +Dj)

9: A := A1+A2+A3, a1 := A1 /A, a2 := A2 /A . Blending functions
10: σ1:= q (a2), σ2:= q (a1), Σ :=σ1+σ2

11: µ1 :=σ1 /Σ, µ2 :=σ2 /Σ

12: W1 := 0, W2 := 0 .Mean value weights for both quadrilaterals
13: for k = 1 to 4 do
14: w 1

k := (t 1
j− + t 1

j)/ r 1
i , w 2

k := (t 2
j− + t 2

j)/ r 2
i

15: W1 :=W1+w 1
k , W2 :=W2+w 2

k

16: for k = 1 to 4 do .Mean value coordinates
17: b 1

k :=w 1
k /W1, b 2

k :=w 2
k /W2

18: for i = 1 to 3 do . Blended coordinates
19: bi := b 1

k µ1+ b 2
k µ2

20: b4 := b 1
4 µ1, b5 := b 2

4 µ2

Pseudocode 3 Case: three overlapping quadrilaterals

1: function b(v)
2: for i = 1 to 6 do . Iterate over all vertices
3: si := vi − v
4: ri := ‖si ‖
5: for j = 1 to 9 do . Iterate over all edges
6: A j := det(si , si+)
7: Dj := 〈si , si+〉
8: t j := A j / (ri ri+ +Dj)

9: A := A1+A2+A3, a1 := A1 /A, a2 := A2 /A, a3 := A3 /A, . Blending functions
10: σ1:= q (a2)q (a3), σ2:= q (a1)q (a2), σ3:= q (a1)q (a3), Σ :=σ1+σ2+σ3

11: µ1 :=σ1 /Σ, µ2 :=σ2 /Σ, µ3 :=σ3 /Σ

12: W1 := 0, W2 := 0, W3 := 0 .Mean value weights for all three quadrilaterals
13: for k = 1 to 4 do
14: w 1

k := (t 1
j− + t 1

j)/ r 1
i , w 2

k := (t 2
j− + t 2

j)/ r 2
i , w 3

k := (t 3
j− + t 3

j)/ r 3
i

15: W1 :=W1+w 1
k , W2 :=W2+w 2

k , W3 :=W3+w 3
k

16: for k = 1 to 4 do .Mean value coordinates
17: b 1

k :=w 1
k /W1, b 2

k :=w 2
k /W2, b 3

k :=w 3
k /W3

18: for i = 1 to 3 do . Blended coordinates
19: bi := b 1

k µ1+ b 2
k µ2+ b 3

k µ3

20: b4 := b 1
4 µ1, b5 := b 2

4 µ2, b6 := b 3
4 µ3

13

